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Key messages:
* A growing number of studies have examined subsurface
marine heatwaves (MHWSs) at both regional and global 1 : FrOm 0_2000 d ba r, Su bsu rface mari ne

scales.

+ Arecent study on coastal subsurface MHWs off Sydney heatwaves (M HWS) can occur deeply and

revealed that different vertical structures of MHWSs

correspond to distinct local ocean processes (Schaeffer 1N d e pe n d en tly .

et al., 2023).

* Another recent study highlighted that global subsurface
MHWs make the species more sensitive to thermal stress
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BACKGROUND

2. Hotspots are identified here in areas with

(Fragkopoulou et al., 2023). the highest ecological exposure to subsurface
" subsuace MAWs, nvestgating ther verta stuctres,  RAUBMCIURUCTCIC PR

drivers and ecological impacts.

DATA & METHODS

3. A classical decomposition method is
Roemmich-Gilson (R-G) aridded Argo data presented to explore the drivers and impacts
 To identify global subsurf.ac.:e MHWSs, we used monthly Of Subsurface MHWS

ocean temperature & salinity data from R-G gridded (1°x
RESULTS

1°2) Argo data (Roemmich and Gilson 2009).
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approach

» To identify the physical processes that caused subsurface 1500
MHWSs, we will adopt the spice and heave decomposition **
approach developed by Bindoff & McDougall (1994).

* This approach decomposes the observational temporal pverage
changes in temperature (T) and salinity (S) along isobars
(“total”) into the changes along isopycnals ("spice”) and 5 1 > 3 4 5 000510152025 012345658 localtemperaturestandard deviation.

the changes due to isopycnal displacements (“*heave”) [months] maximum intensity cumulative Intensity
(Bindoff & McDougall 1994) (Eq.2).

(left) Figure 2. Global distributions of key
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over 2004-2021. The relative intensity is derived
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* The “spice” changes are related to water-mass property
changes, while the “*heave” changes are related to the
iIsopycnal movements (see the schematic below).

* Plankton, the species that are carried by currents and
cannot swim well (e.q., krills), are more affected by the
“spice” T changes than "heave” T changes (see the
schematic below).
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a ‘\ e Dfeve":ha”ges J ¢ \3 Chnes P‘“‘”l’ g/ &t/fee' Changes Figure 4. Hovmoller plots of subsurface extreme temperature (a,c,e) and subsurface

-er - e extreme salinity (b,d,f) in the selected MHW hotspots over 2004-2021. The mixed layer
depth and thermocline maximum depth are shown in pink and black lines, respectively.
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