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The mechanism behind the waves (Lecture 7)
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 The bathymetry induces a z (or y) velocity to the flow, which
reduces its buoyancy (or vorticity)

* |If the perturbation is slow/weak, the flow remains in/near balance
and returns to its original course....

* Butif the perturbation is fast/strong (U ~ %), it kicks of an
oscillation in the lee of the obstacle...



Lee waves as an example
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Pressure is the force per unit area
The horizontal force/stress on the hill is thus:

z ,dh
T=p" Ah —p*®Ah=|p de

The work done on the hill is



Lee waves as an example

Flow () 2 §7 E

Pressure is the force per unit area
The horizontal force/stress on the hill is thus:

l  dh
T=p" Ah —p*®®Ah=|Dp ﬁdx

The work done on the hill is

W= 17—] g g
=T = p dx X
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Lee waves as an example

Flow () 2 §7 E

Pressure is the force per unit area
The horizontal force/stress on the hill is thus:

T =p"“ Ah —p'Ah = jp'@ dx In asymmetric (wave) cases, we are
dx extracting momentum and energy from
The work done on the hill is the hill, into the flow.
_ _dh
W=rt-U= jP'Ua dx The energy and momentum is carried by
the waves
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Lee waves as an example
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Lee waves as an example

i)

Net force of
i -8 -6 -4 -2 | fluid on hill

T=Jp’adx

We still haven’t found the NET reaction force!
The forces on the fluid are in balance at every level....
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Lee waves as an example

i)

P For every action, there is an
equal and opposite reaction

Net force of
+d b 8 - < | fluid on hill | ’ ? e ,
dh A0

T=fp’adx

A NET reaction force is only felt in the layer where the wave decays/attenuates




Lee waves as an example

i)

Net force of
hill on fluid

B For every action, there is an
equal and opposite reaction

Net force of

~10 hd 0 fluid on hill  |< # 0 & ,
dh A0
= '— d
T fp Tx X

A NET reaction force is only felt in the layer where the wave decays/attenuates
*  This could be a LONG way from the action force (hill) = “action at a distance”

. . . . d
*  The wave transports energy and momentum between the hill and site of dissipation via form stresses f p’ d—nx' dx

*  Theforce is given by the decay of the form stress: F = % [p' % dx



Wave energy budget bar = time mean (mean)

prime = time varying (wave)
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Wave energy budget

Du fy= lé‘p+ W2
pr 17T po 0x vy
D 1 o
—V+fu=———p+v‘§'2v
D1 po 0y
1 0
Lo _,
po 02
Db V25
Dr "

V-u=0.

§
N
N

\ — \ A { T\ =D = | TQ\A\(\&:O
LQ,J( K= A+ N w\,\/g_,\y\_ \)\:—%S ué&/ @?SMCHT =
o

—

\

S(g;+@p@3«m@ks)ﬁ96ww3:

*
P
51 2t

0

~i;%z(?+?‘) £ () &t



Wave energy budget
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Wave energy budget
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Wave energy budget

\ \ =0 S \m(\& O
@_f'1;=_ia_p+vvuli Lef w=0rn o e U\""S 0 Ob = = S W't o
Dt po 0x )
D = 1 o _g/,_( ® +/\)_] Ut
E—I_j”:_aﬁ_f’_l_yvxd Q/_ +(U\+\,\\ Q)(m«r\;\) P(“'ﬂj) it )
Lﬁ_p =b = _ L 3% AT Momentum
po 02 B \\\ Kol Ow 4 T s N7 F U\ S — £V =- EN m,* v equation for
Db ‘\\ ‘2530 @:’;‘gm the “mean”
E — szb \ — flow
v-u=0. —_— __;,__..ﬁé ( ya Qﬂl_\ \
_Z)U\ 4+ U\ f? W+ We Qu — W W‘J\ = {l \J <5 ’%ﬁ[ g N} Fw
“d:b B
\ [
L,Qu'
v ya — \ \ W
oY 2



Wave energy budget
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Wave energy budget (25-5) 2
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Wave energy budget 24,y (27
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More general and more exact PE formulations exist; they use a more
sophisticated definition of the background state
* E.g. Hughes, Hogg and Griffiths, 2009.
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Ocean internal wave
energy budget
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Ocean internal wave Dyoe.
energy budget
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Ocean internal wave e R R R
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* Internal waves are able to do mixing in the ocean interior
via wave breaking WG Gl
* Arguably the only process that can do this at scale Jﬁjﬁfﬁ?ets
* Therefore: crucial to maintaining the ocean’s deep
overturning (see Annie’s lecture later)
* |tis the fraction of internal wave energy that goes into
mixing which we care about

Mean Wave
energy 277 energy

Dissipation
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Ocean internal wave Dyoe.

energy budget

* The viscous dissipation (friction) is unimportant:
€ = pov|Vul? ~ 107"W /m3

* This is converted to heating
dT dT €

Po Cp Eze_)azpocp

Wave energy
sources at
boundaries

\IEET Wave
energy 277 energy

Dissipation
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* The viscous dissipation (friction) is unimportant:

€ = pov|Vul? ~ 1077W /m3 Wave energy

t
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Ocean internal wave e R R R
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* The viscous dissipation (friction) is unimportant:

€ = pov|Vul? ~ 1077W /m3 Wave energy
.« . . sources at
* This is converted to heating boundaries
dT dT €
—_— = - =
Poo e ¢ T dr Po Cp
* Heats the ocean @ 1K per million years! Mean Wave

energy PPl energy

Suppose the same amount of energy goes to mixing
The irreversible mixing will lift dense water

wApg =w N2H py = ¢p; ~ 10~7W /m3

3 < Dissipation
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Ocean internal wave e R R R
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energy budget D iy ey
* The viscous dissipation (friction) is unimportant:

€ = pov|Vul? ~ 1077W /m3 Wave energy
.« . . sources at
* This is converted to heating boundaries

dT dT €

Po Cp EZE_)dtzpocp

Heats the ocean @ 1K per million years! Mean Wave
Suppose the same amount of energy goes to mixing S
The irreversible mixing will lift dense water

wApg =w N?H py = ¢; ~ 1077W /m3
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Ocean internal wave e R R R

energy budget D iy o v
Summary: the same amount of energy can

a) Heat the ocean at 1K per millennia (friction) Wave energy

b) Lift 1 million m3 per second from the bottom to the top sources at

boundaries

of the ocean (mixing)

We only care about the mixing!! Mean Wave
qbi qbi energy 9797 energy
mixing efficiency = I' = ~
€ + Qbi €
“It is a truth universally acknowledged, that a single wave in
possession of a good amount of energy, must be in want of Dissipation

27?

mixing at an efficiency of I' = 0. 2”

Note: “Observations” of mixing are usually observations (or
models) of dissipation, converted using this assumption.




Distribution of ocean mixing

“Internal-Wave-Driven Mixing: Global Geography and Budgets

ERIC KUNZE

NorthWest Research Associates, Redmond, Washington

(Manuscript received 13 June 2016, in final form 6 January 2017)

ABSTRACT

Internal-wave-driven dissipation rates £ and diapycnal diffusivities K are inferred globally using a finescale
parameterization based on vertical strain applied to ~30 000 hydrographic casts. Global dissipations are 2.0 +
0.6 TW, consistent with internal wave power sources of 2.1 + 0.7 TW from tides and wind. Vertically in-

Wave energy
sources at

boundaries

+0.7TW
—0.1+13TW

Mean Wave
energy energy

20+06TW

Dissipation Mixing

1.6+ 04TW 04+02TW

We really don’t know very much....

Unfortunately, the ocean (and models
thereof) are very sensitive to the
magnitude and distribution of mixing:
e.g. Melet et al., 2013



Distribution of ocean mixing

“Internal-Wave-Driven Mixing: Global Geography and Budgets

ERIC KUNZE

NorthWest Research Associates, Redmond, Washington

(Manuscript received 13 June 2016, in final form 6 January 2017)

ABSTRACT

Internal-wave-driven dissipation rates £ and diapycnal diffusivities K are inferred globally using a finescale
parameterization based on vertical strain applied to ~30 000 hydrographic casts. Global dissipations are 2.0 +
0.6 TW, consistent with internal wave power sources of 2.1 + 0.7 TW from tides and wind. Vertically in-

“Finescale” dissipation model
The vertical strain is measured at
~10m resolution
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We really don’t
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