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The mechanism behind the waves (Lecture 7)
Gravity waves Rossby waves

• The bathymetry induces a z (or y) velocity to the flow, which 
reduces its buoyancy (or vorticity)

• If the perturbation is slow/weak, the flow remains in/near balance 
and returns to its original course….

• But if the perturbation is fast/strong ( ), it kicks of an 
oscillation in the lee of the obstacle…



Lee waves as an example
𝑝 𝑝

ℎ(𝑥)
Flow (𝑈)

Pressure is the force per unit area
The horizontal force/stress on the hill is thus:

𝜏 = 𝑝  Δℎ − 𝑝 Δℎ = 𝑝
𝑑ℎ

𝑑𝑥
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The work done on the hill is
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In asymmetric (wave) cases, we are 
extracting momentum and energy from 

the hill, into the flow.

The energy and momentum is carried by 
the waves
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Net force of 
fluid on hill

Where is the reaction force applied??????
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We still haven’t found the NET reaction force!
The forces on the fluid are in balance at every level….

Reaction
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• A NET reaction force is only felt in the layer where the wave decays/attenuates
• This could be a LONG way from the action force (hill) = “action at a distance”
• The wave transports energy and momentum between the hill and site of dissipation via form stresses ∫ 𝑝  𝑑𝑥 

 

 

• The force is given by the decay of the form stress: F = ∫ 𝑝  𝑑𝑥 
 

 

Net force!

Net force of 
hill on fluid

wave energy and 
momentum flux



Wave energy budget bar = time mean (mean)
prime = time varying (wave)
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Wave energy budget

• Derivation of the wave KE budget did not rely on any assumptions about the 
flow.

• The PE budget is nastier…
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Wave energy budget

• Derivation of the wave KE budget did not rely on any assumptions about the 
flow…

• The PE budget is nastier…
• 𝑁 must vary slowly or not at all for this PE budget to be valid (usually okay for 

internal waves)

• More general and more exact PE formulations exist; they use a more 
sophisticated definition of the background state

• E.g. Hughes, Hogg and Griffiths, 2009. 

Wave buoyancy 
flux

Mean-to-wave 
exchange

Irreversible 
mixing

Diffusion of PE 
(boundary 

fluxes)
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• Internal waves are able to do mixing in the ocean interior 
via wave breaking

• Arguably the only process that can do this at scale
• Therefore: crucial to maintaining the ocean’s deep 

overturning (see Annie’s lecture later)
• It is the fraction of internal wave energy that goes into 

mixing which we care about
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• The viscous dissipation (friction) is unimportant:

• This is converted to heating
𝜖 = 𝜌 𝜈 𝛻𝑢 ∼ 10 𝑊/𝑚
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• The viscous dissipation (friction) is unimportant:

• This is converted to heating

• Heats the ocean @ 1K per million years!
• Suppose the same amount of energy goes to mixing
• The irreversible mixing will lift dense water

𝜖 = 𝜌 𝜈 𝛻𝑢 ∼ 10 𝑊/𝑚
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• The viscous dissipation (friction) is unimportant:

• This is converted to heating

• Heats the ocean @ 1K per million years!
• Suppose the same amount of energy goes to mixing
• The irreversible mixing will lift dense water

Area of ocean = 

𝜖 = 𝜌 𝜈 𝛻𝑢 ∼ 10 𝑊/𝑚
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Summary: the same amount of energy can
a) Heat the ocean at 1K per millennia (friction)
b) Lift 1 million m3 per second from the bottom to the top 

of the ocean (mixing)

We only care about the mixing!!

“It is a truth universally acknowledged, that a single wave in 
possession of a good amount of energy, must be in want of 

mixing at an efficiency of ”

Note: “Observations” of mixing are usually observations (or 
models) of dissipation, converted using this assumption.



Distribution of ocean mixing Wave energy 
sources at 

boundaries 

Dissipation
1.6 ± 0.4 𝑇𝑊

Mixing
0.4 ± 0.2 𝑇𝑊

Wave 
energy

Mean 
energy

2.1 ± 0.7 𝑇𝑊

MTW

2.0 ± 0.6 𝑇𝑊

−0.1 ± 1.3 𝑇𝑊

We really don’t know very much….

Unfortunately, the ocean (and models 
thereof) are very sensitive to the 
magnitude and distribution of mixing: 
e.g. Melet et al., 2013
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Dissipation
1.6 ± 0.4 𝑇𝑊

Mixing
0.4 ± 0.2 𝑇𝑊

Wave 
energy

Mean 
energy

2.1 ± 0.7 𝑇𝑊

MTW

2 ± 0.6 𝑇𝑊

−0.1 ± 1.3 𝑇𝑊

We really don’t know very much….

“Finescale” dissipation model
The vertical strain is measured at 
~10m resolution

Waterhouse 
et al., 2014

Kunze, 2017
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