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Lee waves as an example

Flow (𝑈)

For every action, there is an 
equal and opposite reaction

𝜏 = 𝑝
𝑑ℎ

𝑑𝑥
 𝑑𝑥 

 

 

Net force of 
fluid on hill

Ispycnal 
height 𝜂′

• A NET reaction force is only felt in the layer where the wave decays/attenuates
• This could be a LONG way from the action force (hill) = “action at a distance”
• The wave transports energy and momentum between the hill and site of dissipation via form stresses ∫ 𝑝  𝑑𝑥 

 

 

• The force is given by the decay of the form stress: F = ∫ 𝑝  𝑑𝑥 
 

 

Net force!

Net force of 
hill on fluid

wave energy and 
momentum flux



Internal wave solutions
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
𝑢 − 𝑓𝑣 = −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕 𝑢

𝜕𝑥

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
𝑣 + 𝑓𝑢 = 𝜈

𝜕 𝑣

𝜕𝑥

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
𝑏 + 𝑁 𝑤 = 𝜈

𝜕 𝑏

𝜕𝑥

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

D=
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
− 𝜈

𝜕

𝜕𝑥



Internal wave solutions
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

D=
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
− 𝜈

𝜕

𝜕𝑥

𝐷 𝑢 − 𝑓𝐷𝑣 = −𝐷
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 = −𝑓 𝑢

𝐷 𝑢 + 𝑓 𝑢 = −𝐷
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷 + 𝑓

𝜕𝑢

𝜕𝑧
= −𝐷

1

𝜌

𝜕 𝑝

𝜕𝑥𝜕𝑧



Internal wave solutions
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

D=
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
− 𝜈

𝜕

𝜕𝑥

𝐷 𝑢 − 𝑓𝐷𝑣 = −𝐷
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 = −𝑓 𝑢

𝐷 𝑢 + 𝑓 𝑢 = −𝐷
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷 + 𝑓

𝜕𝑢

𝜕𝑧
= −𝐷

1

𝜌

𝜕 𝑝

𝜕𝑥𝜕𝑧

𝐷 + 𝑓
𝜕𝑢

𝜕𝑧
= −𝐷

𝜕𝑏

𝜕𝑥



Internal wave solutions
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

D=
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
− 𝜈

𝜕

𝜕𝑥

𝐷 𝑢 − 𝑓𝐷𝑣 = −𝐷
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 = −𝑓 𝑢

𝐷 𝑢 + 𝑓 𝑢 = −𝐷
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷 + 𝑓

𝜕𝑢

𝜕𝑧
= −𝐷

1

𝜌

𝜕 𝑝

𝜕𝑥𝜕𝑧

𝐷 + 𝑓
𝜕𝑢

𝜕𝑧
= −𝐷

𝜕𝑏

𝜕𝑥
𝐷 + 𝑓

𝜕

𝜕𝑧

𝜕𝑢

𝜕𝑥
= 𝑁

𝜕 𝑤

𝜕𝑥



Internal wave solutions
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

D=
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
− 𝜈

𝜕

𝜕𝑥

𝐷 𝑢 − 𝑓𝐷𝑣 = −𝐷
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 = −𝑓 𝑢

𝐷 𝑢 + 𝑓 𝑢 = −𝐷
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷 + 𝑓

𝜕𝑢

𝜕𝑧
= −𝐷

1

𝜌

𝜕 𝑝

𝜕𝑥𝜕𝑧

𝐷 + 𝑓
𝜕𝑢

𝜕𝑧
= −𝐷

𝜕𝑏

𝜕𝑥
𝐷 + 𝑓

𝜕

𝜕𝑧

𝜕𝑢

𝜕𝑥
= 𝑁

𝜕 𝑤

𝜕𝑥

𝐷 + 𝑓
𝜕 𝑤

𝜕𝑧
+ 𝑁

𝜕 𝑤

𝜕𝑥
= 0

Internal waves in a continously stratified flow 



Dispersion relation
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

D=
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
− 𝜈

𝜕

𝜕𝑥
𝐷 + 𝑓

𝜕 𝑤

𝜕𝑧
+ 𝑁

𝜕 𝑤

𝜕𝑥
= 0

Let 𝑤 = 𝑤 𝑒 (  )

−𝑚 −𝑖 𝜔 + 𝑖 𝑘𝑈 + 𝜈𝑘 + 𝑓 − 𝑘 𝑁 = 0

𝜔 =  𝑘𝑈 ± 𝑓 +  
𝑘 𝑁

𝑚

 

− 𝑖 𝜈𝑘 What is the effect of this?

𝜔 =  𝑘𝑈 ± 𝑓 + 𝑘 𝑔 ℎ
 

Recall: Internal wave dispersion relation 
for 2-layered model



Dispersion relation
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

D=
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
− 𝜈

𝜕

𝜕𝑥
𝐷 + 𝑓

𝜕 𝑤

𝜕𝑧
+ 𝑁

𝜕 𝑤

𝜕𝑥
= 0

Let 𝑤 = 𝑤 𝑒 (  )

−𝑚 −𝑖 𝜔 + 𝑖 𝑘𝑈 − 𝜈𝑘 + 𝑓 − 𝑘 𝑁 = 0

𝜔 =  𝑘𝑈 ± 𝑓 +  
𝑘 𝑁

𝑚

 

− 𝑖 𝜈𝑘 What is the effect of this? (Wave decays with time)

𝑚 =
𝑘 𝑁

 𝜔 −  𝑘𝑈 + 𝑖𝜈𝑘 − 𝑓
=

𝑘 𝑁

 𝜔 −  𝑘𝑈 − 𝑓 + 2𝑖𝜈𝑘 𝜔 − 𝑘 𝑈



Dispersion relation
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

D=
𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑥
− 𝜈

𝜕

𝜕𝑥
𝐷 + 𝑓

𝜕 𝑤

𝜕𝑧
+ 𝑁

𝜕 𝑤

𝜕𝑥
= 0

Let 𝑤 = 𝑤 𝑒 (  )

−𝑚 −𝑖 𝜔 + 𝑖 𝑘𝑈 − 𝜈𝑘 + 𝑓 − 𝑘 𝑁 = 0

𝜔 =  𝑘𝑈 ± 𝑓 +  
𝑘 𝑁

𝑚

 

− 𝑖 𝜈𝑘 What is the effect of this? (Wave decays with time)

𝑚 =
𝑘 𝑁

 𝜔 −  𝑘𝑈 + 𝑖𝜈𝑘 − 𝑓
=

𝑘 𝑁

 𝜔 −  𝑘𝑈 − 𝑓 + 2𝑖𝜈𝑘 𝜔 − 𝑘 𝑈
≃

𝑘 𝑁

 𝜔 −  𝑘𝑈 − 𝑓
1 −

2𝑖𝜈𝑘 𝜔 − 𝑘 𝑈

 𝜔 −  𝑘𝑈 − 𝑓

𝑚 ≃ ±
𝑘 𝑁

 𝜔 −  𝑘𝑈 − 𝑓
 

1 −
𝑖𝜈𝑘 𝜔 − 𝑘 𝑈

 𝜔 −  𝑘𝑈 − 𝑓
= ±𝑚 (1 − 𝛾𝑖) Wave decays with depth

Small dissipation approximation 



Internal wave solutions
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

𝐷 + 𝑓
𝜕 𝑤

𝜕𝑧
+ 𝑁

𝜕 𝑤

𝜕𝑥
= 0 Let 𝑤 = 𝑤 𝑒 (  )

𝑚 ≃ −
𝑘 𝑁

 𝜔 −  𝑘𝑈 − 𝑓
 

1 −
𝑖𝜈𝑘 𝜔 − 𝑘 𝑈

 𝜔 −  𝑘𝑈 − 𝑓
= −𝑚 (1 − 𝛾𝑖)

Wave decays as it propagates upwards



Lee wave solutions
• Linearise z-coordinate equations about mean 

flow and stratification 2

• Assume no variation in y  (ridge)
• Horizontal viscosity only = diffusivity

Flow (𝑈)

𝐷 + 𝑓
𝜕 𝑤

𝜕𝑧
+ 𝑁

𝜕 𝑤

𝜕𝑥
= 0 Let 𝑤 = 𝑤 𝑒 (  )

𝑚 ≃ −
𝑘 𝑁

 𝜔 −  𝑘𝑈 − 𝑓
 

1 −
𝑖𝜈𝑘 𝜔 − 𝑘 𝑈

 𝜔 −  𝑘𝑈 − 𝑓
= −𝑚 (1 − 𝛾𝑖)

Wave decays as it propagates upwards

Let 𝜔 = 0 and we need a boundary condition 

Solution plotted here

Waves 
decay



Lee wave solutions
Flow (𝑈)𝑚 =

𝑘 𝑁

 𝑘𝑈 − 𝑓
 

Waves 
decay

Flow (𝑈)

Flow (𝑈)

𝑘 𝑈 > 𝑓

𝑘 𝑈 < 𝑓

• The wavenumber is only real (waves exist) for 
• This is what we mean by “fast enough”



Lee wave form stress
Flow (𝑈)

Waves 
decay

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

𝐹 = 𝑝
𝜕𝜂′

𝜕𝑥
 𝑑𝑥 

 

 

Solution for vertical 
velocity:

Form stress:

Equation tool kit:

D ≃ 𝑈
𝜕

𝜕𝑥



Lee wave form stress
Flow (𝑈)

Waves 
decay

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

𝐹 = 𝑝
𝜕𝜂′

𝜕𝑥
 𝑑𝑥 

 

 

Solution for vertical 
velocity:

Form stress:

Equation tool kit: 𝐹 = 𝑝
𝜕𝜂′

𝜕𝑥
 𝑑𝑥 = 𝑝 

−1

𝑁

𝜕𝑏

𝜕𝑥
𝑑𝑥

 

 

 

 

D ≃ 𝑈
𝜕

𝜕𝑥

= 𝑝
𝑤

𝑈
𝑑𝑥

 

 

=
1

𝑈
𝑤𝑝 𝑑𝑥
 

 



Lee wave form stress
Flow (𝑈)

Waves 
decay

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

𝐹 = 𝑝
𝜕𝜂′

𝜕𝑥
 𝑑𝑥 

 

 

Solution for vertical 
velocity:

Form stress:

Equation tool kit: 𝐹 = 𝑝
𝜕𝜂′

𝜕𝑥
 𝑑𝑥 = 𝑝 

−1

𝑁

𝜕𝑏

𝜕𝑥
𝑑𝑥

 

 

 

 

D ≃ 𝑈
𝜕

𝜕𝑥

= 𝑝
𝑤

𝑈
𝑑𝑥

 

 

=
1

𝑈
𝑤𝑝 𝑑𝑥
 

 

Form stress = 
wave energy flux

𝑈

Wave 
energy flux
decreases
relative to 
form 
stress!

e.g. Bretherton (1969)



Lee wave form stress
Flow (𝑈)

Waves 
decay

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

𝐹 = 𝑝
𝜕𝜂′

𝜕𝑥
 𝑑𝑥 =

1

𝑈
𝑤𝑝 𝑑𝑥
 

 

 

 

Solution for vertical 
velocity:

Form stress:

Equation tool kit:

D ≃ 𝑈
𝜕

𝜕𝑥 Form stress = 
wave energy flux

𝑈

Wave 
energy flux
decreases
relative to 
form stress

𝑏 =
−𝑖 𝑚

𝜌
�̂� i 𝑘𝑈𝑏 + 𝑁 𝑤 = 0



Lee wave form stress
Flow (𝑈)

Waves 
decay

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

𝐹 = 𝑝
𝜕𝜂′

𝜕𝑥
 𝑑𝑥 =

1

𝑈
𝑤𝑝 𝑑𝑥
 

 

=
1

2𝜋𝑈
𝑤 �̂�∗ 𝑑𝑘
 

 

 

 

Solution for vertical 
velocity:

Form stress:

Equation tool kit:

D ≃ 𝑈
𝜕

𝜕𝑥 Form stress = 
wave energy flux

𝑈

Wave 
energy flux
decreases
relative to 
form stress

𝑏 =
−𝑖 𝑚

𝜌
�̂� i 𝑘𝑈𝑏 + 𝑁 𝑤 = 0

�̂� = −𝜌
𝑁

𝑚 𝑘𝑈
𝑤

𝑤 �̂�∗ = −𝜌
𝑁

𝑚 𝑘𝑈
𝑤



Lee wave form stress
Flow (𝑈)

Waves 
decay

Flow (𝑈)

𝐷 𝑢 − 𝑓𝑣 = −
1

𝜌

𝜕𝑝

𝜕𝑥
𝐷𝑣 + 𝑓𝑢 = 0

𝑏 =
1

𝜌

𝜕𝑝

𝜕𝑧
𝜕𝑢

𝜕𝑥
+

𝜕𝑤

𝜕𝑧
= 0

𝐷𝑏 + 𝑁 𝑤 = 0

𝐹 = 𝑝
𝜕𝜂′

𝜕𝑥
 𝑑𝑥 =

1

𝑈
𝑤𝑝 𝑑𝑥
 

 

=
1

2𝜋𝑈
𝑤 �̂�∗ 𝑑𝑘
 

 

 

 

Solution for vertical 
velocity:

Form stress:

Equation tool kit:

D ≃ 𝑈
𝜕

𝜕𝑥 Form stress = 
wave energy flux

𝑈

Wave 
energy flux
decreases
relative to 
form stress

𝑏 =
−𝑖 𝑚

𝜌
�̂� i 𝑘𝑈𝑏 + 𝑁 𝑤 = 0

�̂� = −𝜌
𝑁

𝑚 𝑘𝑈
𝑤

𝑤 �̂�∗ = −𝜌
𝑁

𝑚 𝑘𝑈
𝑤

Energy flux =
−𝜌 𝑁

𝑚
𝑈 𝑘 ℎ  𝑒



Lee wave form stress
Flow (𝑈)

Waves 
decay

Flow (𝑈)

Form stress = 
wave energy flux

𝑈

Wave 
energy flux
decreases
but form 
stress 
remains 
the same 

Energy flux =
−𝜌 𝑁

𝑚
𝑈 𝑘 ℎ  𝑒

Form stress =
−𝜌 𝑁

𝑚
𝑘 ℎ  𝑒

• Energy flux decays due to dissipation 𝛾>0 and due to changes in mean 
flow (mean-to-wave exchanges)

• Form stress only decays due to dissipation 𝛾>0

Conclusions:
• A wave can lose (or gain) energy to a mean flow without changing its 

total form stress 
• Waves do not possess momentum e.g. McIntyre, 1981: “On the 

wave momentum myth”

• Form stress only decays (= force on the mean flow) if there is 
dissipation!

• “non-acceleration theorem” e.g. Andrews and McIntyre (1978)



• Previously we came up with the mean momentum equation:

• Rearranging we have that

• In the vertical direction this is = vertical ‘momentum flux’
• Are we done? Does this equal the stress from the hill?

The impact of waves (time varying flow) on the 
mean flow

Reynolds stresses



Does ? 

The impact of waves (time varying flow) on the 
mean flow

Form stress Reynolds stress



Does ? 

The impact of waves (time varying flow) on the 
mean flow

Form stress Reynolds stress

Integrate by parts

𝜕𝑝′

𝜕𝑥
= −𝜌

𝐷𝑢

𝐷𝑡
 − 𝑓 𝑣

𝑤 =
𝐷𝜂

𝐷𝑡

No!



The impact of waves (time varying flow) on the 
mean flow

Stress on a 
z levelStress on an 

isopycnal

Corrections/translations

Can we re-write our previous momentum balance in terms of the isopycnal stress?



The impact of waves (time varying flow) on the 
mean flow

Momentum balance with stress at fixed z

Momentum balance with stress at fixed isopycnal (form stress)

Residual Flow

Form stress



The impact of waves (time varying flow) on the 
mean flow

Momentum balance with stress at fixed z

Momentum balance with stress at fixed isopycnal (form stress)

Residual Flow

Eliassen-Palm (EP) 
Flux



The impact of waves (time varying flow) on the 
mean flow

*It must be true that = 0 for this step

Split the mean and wave parts

Make the small amplitude approximation

Form stressFlow integrated from 
bottom to height

You get the same result by integrating from the bottom to some isopycnal (as you might do when 
calculating the MOC in density space….)

Take the gradient with respect to mean 
isopycnal heights



What does this all mean?
Suppose we have a steady mean flow, with small Rossby number (neglect advection)

Take a zonal average (denote by [ ]) and assume the domain is periodic (e.g. the ACC)



What does this all mean?
Suppose we have a steady mean flow, with small Rossby number (neglect advection)

Take a zonal average (denote by [ ]) and assume the domain is periodic (e.g. the ACC)

Wave (or 
eddy) driven
circulation

Wind driven
circulation

Value at surface

“Residual” streamfunction



Eddy-driven circulation

Abernathey, R., Marshall, J. & Ferreira, D. Dependence of southern ocean
overturning on wind stress. J. Phys. Oceanogr. 41, 22612278 (2011)



Internal-wave driven circulation

Shakespeare, Callum J., and Andrew McC. Hogg. "On the 
momentum flux of internal tides." Journal of Physical 
Oceanography 49.4 (2019): 993-1013.

x,y mean



Ocean space-time scale diagram

small big
fast

slow

1 hour

PERIOD

HALF-WAVELENGTH

BGWs 
(tides)

OCEAN 
OVERTURNING 

(MOC)
centuries

months Eddies

seconds SGWs

IGWs

1 day

BRWs

IRWs
What does “mean” really mean?
• A temporal and/or spatial 

scale separation!
Thus:
• MOC is “mean flow” for eddies 

or RWs
• Eddies and MOC are both 

“mean flow” for IGWs and 
BGWs

• IGWs are mean for SGWs
The same formalism can be used 
in each case.
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